Descrizione del Prodotto

Il variatore di velocità Schneider Electric ATV32H037N4 è progettato per il controllo di motori asincroni e sincroni in applicazioni industriali complesse. Offre un design compatto con dissipatore di calore integrato, facilitando l'installazione in spazi ristretti. ([se.com](https://www.se.com/be/en/product/ATV32H037N4/variable-speed-drive-atv32-0-37-kw-400-v-3-phase-with-heat-sink/?utm source=openai))

Caratteristiche Principali

- **Gamma di prodotti**: Altivar 32
- **Tipo di prodotto**: Variatore di velocità
- **Applicazione specifica**: Macchine complesse
- **Filtro EMC**: Integrato, Classe C2
- **Numero di fasi**: 3 fasi
- **Tensione di alimentazione**: 380...500 V (-15...+10%)
- **Frequenza di alimentazione**: 50...60 Hz (-5...+5%)
- **Potenza motore**: 0,37 kW (0,5 HP)
- **Corrente di linea**: 2,1 A a 380 V; 1,6 A a 500 V
- **Potenza apparente**: 1,4 kVA a 500 V
- **Corrente di uscita nominale**: 1,5 A a 4 kHz
- **Corrente transitoria massima**: 2,3 A per 60 s
- **Frequenza di uscita**: 0,0005...0,599 kHz
- **Frequenza di commutazione nominale**: 4 kHz
- **Frequenza di commutazione regolabile**: 2...16 kHz
- **Gamma di velocità**: 1...100 per motori asincroni in modalità a circuito aperto
- **Precisione della velocità**: ±10% dello scorrimento nominale da 0,2 Tn a Tn
- **Precisione della coppia**: ±15%
- **Sovracoppia transitoria**: 170...200%
- **Coppia di frenatura**: ≤170% con resistenza di frenatura
- **Profili di controllo per motori asincroni**: Rapporto tensione/frequenza (2 o 5 punti), Controllo vettoriale di flusso senza sensore, U/f quadratico per risparmio energetico
- **Profili di controllo per motori sincroni**: Controllo vettoriale senza sensore
- **Anello di regolazione**: Regolatore PID regolabile
- **Compensazione dello scorrimento del motore**: Automatica indipendentemente dal carico
- **Segnalazione locale**: LED per tensione del drive, errore CANopen, esecuzione CANopen e difetto del variatore
- **Tensione di uscita**: ≤ tensione di alimentazione

- **Livello di rumore**: 43 dB
- **Isolamento**: Elettrico tra alimentazione e controllo
- **Connessioni elettriche**: Terminali a vite per controllo (0,5...1,5 mm²), motore/resistenza di frenatura (1,5...2,5 mm²) e alimentazione potenza (1,5...4 mm²)
- **Coppia di serraggio**: 0,5 Nm per controllo, 0,6 Nm per motore/resistenza di frenatura, 1,2 Nm per alimentazione potenza
- **Alimentazione interna per potenziometro di riferimento**: 10,5 V CC ±5%, ≤10 mA con protezione da sovraccarico e cortocircuito
- **Numero di ingressi analogici**: 3
- **Tipo di ingressi analogici**: Tensione AI1 0...10 V CC (30 k Ω , 10 bit), Tensione differenziale bipolare AI2 ±10 V CC (30 k Ω , 10 bit), Corrente AI3 0...20 mA (250 Ω , 10 bit)
- **Durata di campionamento**: 2 ms per AI1, AI2, AI3
- **Tempo di risposta**: 8 ms ±0,7 ms per LI1...LI6, 2 ms per R1A, R1B, R1C, R2A, R2C
- **Precisione**: $\pm 0.2\%$ per AI1, AI2, AI3 da -10 a 60°C; $\pm 0.5\%$ per AI1, AI2, AI3 a 25°C; $\pm 1\%$ per AO1 a 25°C; $\pm 2\%$ per AO1 da -10 a 60°C
- **Errore di linearità**: ±0,2...0,5% del valore massimo per AI1, AI2, AI3; ±0,3% per AO1
- **Numero di uscite analogiche**: 1
- **Tipo di uscite analogiche**: Corrente AO1 0...20 mA (800 Ω , 10 bit), Tensione AO1 0...10 V (470 Ω , 10 bit)
- **Numero di uscite digitali**: 3
- **Tipo di uscite digitali**: Relè configurabile R1A, R1B, R1C (NA/NC, 100.000 cicli), Relè configurabile R2A, R2B (NA, 100.000 cicli), Logica LO
- **Corrente di commutazione minima**: 5 mA a 24 V CC per relè configurabile
- **Corrente di commutazione massima**: 3 A a 250 V CA resistivo (cos φ = 1) per R1; 4 A a 30 V CC resistivo (cos φ = 1) per R1; 2 A a 250 V CA induttivo (cos φ = 0,4) per R1, R2; 2 A a 30 V CC induttivo (cos φ = 0,4) per R1, R2; 5 A a 250 V CA resistivo (cos φ = 1) per R2; 5 A a 30 V CC resistivo (cos φ = 1) per R2
- **Numero di ingressi digitali**: 7
- **Tipo di ingressi digitali**: Programmabili PNP/NPN LI1...LI4 (24...30 V CC livello 1 PLC), Programmabili PNP/NPN LI5...LI6 (24...30 V CC livello 1 PLC), PNP/NPN LI7 (24...30 V CC livello 1 PLC)
- **Logica di ingresso digitale**: Logica negativa (sink) per LI1...LI6 (>19 V, 19 V, <13 V)
- **Rampe di accelerazione e decelerazione**: S, U, L, decelerazione automatica
- **Frenatura fino all'arresto**: Tramite iniezione di corrente continua
- **Tipo di protezione**: Interruzione fase di ingresso per il drive
- **Protocollo di comunicazione**: CANopen
- **Tipo di connettore**: 1 RJ45 per Modbus/CANopen sul frontale
- **Interfaccia fisica**: RS485 a 2 fili per Modbus

- **Frame di trasmissione**: RTU per Modbus
- **Tipo di polarizzazione**: Nessuna impedenza per Modbus
- **Numero di indirizzi**: 1...127 per CANopen
- **Metodo di accesso**: Slave per CANopen
- **Compatibilità elettromagnetica**: Immunità ai disturbi di livello 3 secondo IEC 61000-4-5
- **Larghezza**: 45 mm
- **Altezza**: 317 mm
- **Profondità**: 245 mm
- **Peso del prodotto**: 2,5 kg
- **Scheda opzionale**: Scheda di comunicazione CANopen Daisy Chain
- **Funzionalità**: MID
- **Applicazione specifica**: Altre applicazioni

Note

Il modello ATV32H037N4 è stato dichiarato obsoleto il 18 ottobre 2023. Il prodotto consigliato come sostituto è